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Abstract: As the demand for telecommunication services continues to grow, there is a need to understand the 

behavior of the telecommunication network flow to ensure optimal performance, reliability and increase the number 

of subscribers. This research used an Autoregressive Fractionally Integrated Moving Average (ARFIMA) model 

along with its different estimation procedures to investigate long memory behaviour of Nigerian telecommunication 

network flow from August 11, 2017, to December 31, 2022. Augmented Dickey-Fuller (ADF) and Phillips-Perron 

(PP) tests were employed to investigate the presence of the unit root of the series. The test results confirmed the 

absence of a unit root in the series. However, Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test result suggested that 

the null hypothesis of stationarity is rejected at a 5% significance value (typical behaviour of series with a long 

memory). Moreover, the Autocorrelation (ACF) functions plot showed a slow decay, indicating that even very 

distant, the flow of the network data were still highly correlated with each other. In addition, long memory parameter 

𝑑value for MTN internet network flow was also estimated using Geweke and Porter-Hudak (GPH), Smoothed 

Periodogram (Sperio), Exact Maximum Likelihood (EML) and Whittle Approximate Maximum Likelihood 

(WAML) method. The result found that the series exhibits some degree of long memory behaviour. However, based 

on the minimum AIC and BIC values ARFIMA (3, 0.2622, 3) model is suitable for the data. More so, the structural 

break was also investigated using the Quandt Likelihood Ratio (QLR) test. The results revealed that the series have 

a breakpoint in 2021. The R software package has been used for data analysis (Version: 4.1.2). 
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1.   INTRODUCTION 

1.1 Background of the Study 

Time series data represent sets of data points collected in a sequential manner over a specific, equal time interval. As time 

series presents its values sequentially over time, it is expected to present a serial correlation in time that is characteristic of 

dependence between the present and previous values (Ribeiro, 2003). The long memory process is known to have a high-

order correlation structure, indicating that there is a significant dependency between the previous and present points. Long 

memory is a phenomenon one may sometimes face when analyzing time series data, where long-term dependence between 

two points increases the amount of distance between them (Bahar, 2017). Usually, when modelling long-term behaviour for 

any time series, such as those in foreign exchange, Astronomy, Hydrology, Mathematics, and Economics etc., the operation 

can be more accurate by relying on the ARFIMA models compared with the ARIMA models. ARFIMA can also have an 

important impact on the financial field (Bhardwaj and Swanson, 2006; Beran, 1994, 1995; Karia, 2016).  The model was 

first introduced by Granjer and Joyeux (1980), as mentioned by Mostafaei and Sakhabakhsh (2012), to capture the long-

memory behaviour of this time series data. The long memory feature exists if the autocorrelation function (ACF) decays 

more slowly than the exponential decay described by (Bahar, 2017). Structural break test when estimating the ARFIMA 

model is of great importance as it prevents misleading results as required to the output to be brought about and prediction 

confidence. For many years, many studies have been done that relate to the modeling and forecasting short memory of 
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telecommunications network flow or however, very few studies are available for long memory (Kalpakis et al., 2001; Yu 

and Zhang, 2005; Moussas et al., 2005; Suarez et al., 2009; Bazghandi et al., 2012; Okunlola, 2013; Okunlola 2013; Wang 

et al., 2015; Jibrin et al., 2015; Siluyele, and Jere, 2016; Babayemi et al., 2017; Adaramola, 2018; Oduro-Gyimah and 

Boateng, 2018; Adeyemo and Adeyemo, 2017; Adewumi and Adebayo, 2019; Monge and Juan, 2023). Thus, this research 

aimed to investigate the long memory behavior of the Nigerian telecommunication network flow, with a specific focus on 

the MTN network. By understanding the long memory behavior of the network flow, this study will contribute to the 

development of effective strategies for optimizing the performance and reliability of the Nigerian telecommunication 

network. with a view to achieve the following objectives (i) To examine the stationarity of the series (ii) To identify the 

presence of structural break (iii) To estimate long memory parameter 𝑑 for the data point (iv) To determine the suitable 

ARFIMA model for the Nigerian Telecommunication Network 

2.   METHODOLOGY 

2.1 Time Series Models 

A time series {𝑦𝑡} is a collection of data points that are taken with an ordered index. The order of collection may or may 

not be regular and the data may or may not be continuous. A time series stochastic process 𝜀𝑡 is said to be a purely random 

process if each 𝜀𝑡is independent from all the other observations. A time series 𝑦𝑡  is called a white noise process denoted 

by 𝜀𝑡, if satisfied the following conditions (i) 𝐸{ 𝜀𝑡} = 0 (Zero mean), (ii) 𝑉𝑎𝑟{𝜀2
𝑡} = 𝜎2 < ∞ (Constant variance), (iii) 

Cov{  𝜀1 𝜀2} = 0 if 𝑡1  𝑡2 (not serially correlated in this case we write  𝜀𝑡 ∼ WN(𝑂, 𝜎2)) 

2.2 𝑴𝑨(𝒒), 𝑨𝑹(𝒑), 𝐀𝐑𝐌𝐀 (𝐩, 𝐪), 𝐀𝐑𝐈𝐌𝐀 (𝐩, 𝐝, 𝐪) and 𝐀𝐑𝐅𝐈𝐌𝐀 (𝐩, 𝐝, 𝐪) Process 

𝑴𝑨(𝒒) Process: A time series {𝑦𝑡} is Moving Average 

(MA) process of order 𝑞 denoted by MA(q) and defined by  

𝑦𝑡 = 𝑐 + 𝜃(𝐿)𝜀𝑡                              (2.1) 

where 𝑐 is constant,  𝜃0 = 1 and 𝜃1, 𝜃2, … , 𝜃𝑞 are fixed 

constant and 𝜀𝑡 is a white noise with mean 0 and variance 

𝜎2. However, the exclusion of the constant 𝑐 in the process 

𝑦𝑡  is called zero mean MA(q) process. 

𝑨𝑹(𝒑) Process: A time series {𝑦𝑡} is an Autoregressive 

process of order 𝑝 denoted by 𝐴𝑅(𝑝) and defined by 

       𝜙(𝐿)𝑦𝑡 = 𝜀𝑡 + 𝑐                           (2.2) 

where 𝑐 is constant, 𝜙1, 𝜙2, … , 𝜙𝑝 are fixed constant, 𝜀𝑡 is 

a white noise with mean 0 and variance 𝜎2. However, the 

exclusion of the constant 𝑐 in the process 𝑦𝑡 is called zero 

mean 𝐴𝑅(𝑝) process. 

𝐀𝐑𝐌𝐀 (𝐩, 𝐪) Process: The Autoregressive Moving 

Average Process of order (𝑝, 𝑞) denoted by 

ARMA(p, q) and defined by                        𝜙(𝐿)𝑦𝑡 =
𝜃(𝐿)𝜀𝑡                               (2.3) 

where 𝜙𝑘 and 𝜃𝑘 are defined as for AR and MA models 

respectively, 𝜙(𝐿) and 𝜃(𝐿) are there lags polynomial, 

𝜃0 = 1. ARMA process is stationary if the AR component 

of the series is stationary and invertible, if the MA 

component is invertible. 

 

𝐀𝐑𝐈𝐌𝐀 (𝐩, 𝐝, 𝐪)  Process: ARIMA (p, d, q) model is 

defined by differencing the time series data 'd' times to 

achieve stationarity and then applying an Autoregressive 

(AR) model with 'p' lags and a Moving Average (MA) 

model with 'q' lags to the differenced series. 

𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) is define by: 

    ∇𝑑𝜙(𝐿)𝑦𝑡 = 𝜃(𝐿)𝜀𝑡                         (2.4) 

However, ARM process cannot account for the slowly 

decaying ACF. In such cases, the ARFIMA model can be 

applied to account for the slow decay of the ACF. 

𝐀𝐑𝐅𝐈𝐌𝐀 (𝐩, 𝐝, 𝐪) Process: The ARFIMA (p, d, q) process generalizes ARIMA by allowing fractional degrees of 

integration, accommodating time series with long memory that exhibit dependencies between 0 and 1. It is defined by 

differencing the series a fractional number of times (0 < d < 1). Thus, the process captured both short-term and long-term 

dependencies than the traditional ARIMA model. defined by:   (1 − 𝐿)𝑑𝜙(𝐿)𝑦𝑡 = 𝜃(𝐿)𝜀𝑡                                          (2.5) 

where 𝑑 denotes non-integer fractional differencing parameter, 𝐿 is the lag operator, 𝜃 is the moving average parameter, 𝜙 

is the autoregressive parameter,  𝑦𝑡  is the time series data at time 𝑡, and 𝜀𝑡~𝑊𝑁(0, 𝜎𝜀
2) is a white noise distribution term, 

for all t,  𝐸(𝜀𝑡) = 0 and 𝑉𝑎𝑟(𝜀𝑡) = 𝜎𝜀
2 are serially uncorrelated. 𝜙(𝐿) = 1 − 𝜙1𝐿 − 𝜙2𝐿

2 − ⋯− 𝜙𝑝𝐿
𝑝 and 𝜃(𝐿) = 1 +

𝜃1𝐿 + 𝜃2𝐿
2 + ⋯+ 𝜃𝑞𝐿

𝑞 . where, 𝜃(𝐿) and 𝜙(𝐿) represent 𝐴𝑅(𝑃)𝑎𝑛𝑑 𝑀𝐴(𝑞) Components respectively with no common 

roots. 𝐿 is the lag operator or backward shift operation ∇𝑑= (1 − 𝐿)𝑑 further expand by ∇𝑑= (1 − 𝐿)𝑑 =

∑
Γ(𝑘−𝑑)

Γ(−𝑑)Γ(𝑘+1)
∞
𝑘=0 𝐿𝑘  where Γ(. ) denote the gamma function, ∇𝑑 is the fractional differencing operator and the fractional 

differencing parameter 𝑑 is escapable to have any real value. 
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2.3 Long Memory Process 

Long memory describes the correlation structure of a series at long-range. In the time domain, it is characterized by a 

hyperbolically decaying auto covariance function. This slow decay of the autocorrelation function is considered to be the 

defining feature typical of a long memory process. 𝑦𝑡 is called a long memory process if its autocovariance function is such 

that the autocorrelations are positive and decay hyperbolically to zero. The asymptotic property can be expressed as:          

                                                            𝜌𝑘 ≈ M𝑘2𝑑−1   ;       𝑎𝑠  𝑘 → ∞                                                 (2.6) 

when 𝑑 ∈ (0, 0.5) the series is stationary and said to have long memory, while if 𝑑 >  0.5, the series is non-stationary and 

hence unpredictable. For 𝑑 ∈ (−0.5, 0], the series is described as having short memory. Stationary process has a long 

memory if its absolute autocorrelation function has an infinite sum. Consequently, the autocorrelation function 𝜌𝑘 at lag 𝑘 

is defined according to:                                         ∑ |𝜌k|
𝑛
𝑘=−𝑛 = ∞                                                                       (2.7) 

where n is the number of observations. The method of estimation in this research was based on cases where 𝑑 ∈

(−0.5, 0.5). 

2.4 Autocovariance, Autocorrelation and Partial Autocorrelation   

The autocovariance of the process 𝒚𝒕 is given by 

 
𝜸𝒌 = 𝑬(𝒚𝒕, 𝒚𝒕−𝒌) =

(−𝟏)𝒌(−𝟐𝒅)!

(𝒌 − 𝒅)! (−𝒌 − 𝒅)!
 

The autocorrelation function is defined by 
𝜌𝑘 =

𝛾𝑘

𝛾0

=
(−𝑑)! (𝑘 + 𝑑 − 1)!

(𝑑 − 1)! (𝑘 − 𝑑)!
     , 𝑘 = 1,2,3, … 

𝜌𝑘 ≈
(−𝑑)!

(𝑑 − 1)!
𝑘2𝑑−1 

𝜌𝑘 ≈ M𝑘2𝑑−1 

The partial autocorrelation function can be expressed as 
𝜑𝑘 =

𝑑

𝑘 − 𝑑
 

Properties of an ARFIMA process area bridged in the following theorem (Babayemi et al., 2017). Let 𝑦𝑡  be an 

ARFIMA (p, d, q) process then: (i) 𝑦𝑡 Is stationary and invertible if 𝑑 < 0.5 and all the root of 𝜙(𝐿) = 0 lie outside the unit 

circle (ii) 𝑦𝑡 Is non-stationary if  𝑑 ≥ 0.5 and all the root of  𝜃(𝐿) = 0 lie outside the unit circle (iii) If  −0.5 <  𝑑 <  0.5 , 

the autocovariance of 𝑦𝑡;  𝜌𝑘 ≈ 𝑀𝑘2𝑑−1 as 𝑘 → ∞ where 𝑀 is a function of 𝑑. The autocovariance function of ARFIMA 

process decay hyperbolically to zero as 𝑘 → ∞ in contrast to the faster geometric decay of a stationary ARMA process. 

3.   ESTIMATION PROCEDURES 

This research work dealt with some well-known parametric and semiparametric methods of estimating long memory 

parameter 𝑑. Among the parametric estimation method used in this research work include: Exact Maximum Likelihood 

(EML) and Whittle Approximate Maximum Likelihood (WAML). The research implements Geweke and Porter-Hudak 

(GPH) and Smoothed Periodogram (Sperio) for semiparametric estimation methods. Description of these methods are as 

follow: 

Exact Maximum Likelihood (EML): Assuming a time series 𝑦𝑡  is stationary and invertible, such that, −0.5 <  𝑑 <  0.5 

the exact Gaussian log likelihood is defined by the objective function as: 

log𝐿𝐸(𝑑, 𝜙, 𝜃, 𝜎2, 𝜇) = −
1

2
[𝑇log(2𝜋) + log det(Σ) + (𝑌 − 𝜇𝑙)′Σ−1

(𝑌 − 𝜇𝑙)]               (2.8) 

where Σ is the variance covariance matrix of Y, such that  𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛)′ and 𝑙 = (1,1, … ,1)′, 𝜙 and the 𝜃 are the 

parameters 𝜙(𝐿) = 1 − 𝜙1𝐿 − 𝜙2𝐿
2 − ⋯− 𝜙𝑝𝐿

𝑝 and 𝜃(𝐿) = 1 + 𝜃1𝐿 + 𝜃2𝐿
2 + ⋯+ 𝜃𝑞𝐿

𝑞 respectively and 𝜇 is the mean 

of 𝑌. 

Whittle Approximate Maximum Likelihood (WAML): The WAML method is an alternative to the EML method for 

estimating parameter 𝑑 of the ARFIMA (𝑝, 𝑑, 𝑞) model. Whittle (1951) observed that for stationary models, the variance-

covariance matrix Σ can be diagonalized by transforming the model into the frequency domain. Following the arguments 
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of Johnstone and Silverman (1997), McCoy and Walden (1996), and Jensen (2000), the research work assumed that the 

asymptotic behaviour is satisfied, where 𝜎2 depends on other parameters of the model. Assuming Gaussian errors, the 

Whittle likelihood function is given by 

𝐿𝑊(𝑑, 𝜙, 𝜃, 𝜎2) = 𝑇

[
 
 
 

log(2𝜋) − 1 − log
1

𝑇
∑

𝐼(𝜆𝑖)

𝑓𝑦(𝜆𝑖)

𝑇
2

𝑖=1
]
 
 
 

− ∑log𝑓𝑦(𝜆𝑖)

𝑇
2

𝑖=1

                        (2.9) 

where 𝜆𝑖 =
2𝜋𝑖

𝑇
 and the Fourier frequency, 𝐼(𝜆𝑖) =

1

2𝜋𝑇
|∑ 𝑦𝑡𝑒

𝑖𝑡𝜆𝑇
𝑡=1 |

2
 is the periodogram of 𝑦𝑡  and 𝑓𝑦(𝜆) is the spectral 

density function defined by 

𝑓𝑦(𝜆) =
𝜎2

2𝜋
|1 − 𝑒𝑖𝜆|

−2𝑑 |𝜃(𝑒𝑖𝜆)|
2

|𝜙(𝑒𝑖𝜆)|2
=

𝜎2

2𝜋
(2𝑠𝑖𝑛𝜆/2)−2𝑑

|𝜃(𝑒𝑖𝜆)|
2

|𝜙(𝑒𝑖𝜆)|2
                             (2.10) 

Geweke and Porter-Hudak (GPH): The simple spectral regression method or log periodogram regression method 

proposed by Geweke and Porter-Hudak (1983) is one of the most popular estimators for distinguishing long memory from 

short memory effects. Base on the series of length 𝑛 the estimated slope coefficient of 

log(𝐼(𝜆𝑖)) = 𝑐𝑜𝑛𝑠𝑡 + 𝑑log ({2𝑠𝑖𝑛 (
𝜆𝑖

2
)}

−2

) + 𝜀                                                    (2.11) 

Is used as estimator for the fractional integrated parameter 𝑑 of ARFIMA (𝑝, 𝑑, 𝑞) model. It is denoted by GPH. where  𝜀 is 

the error term, 𝐼(𝜆𝑖) is the periodogram normalized by 2𝜋 at the 𝑖𝑡ℎ Fourier frequency 𝜆𝑖. 𝜆𝑖 = 𝑖
2𝜋

𝑛
. Only the first to the 

𝑚𝑡ℎ Fourier frequency 𝜆𝑖; 𝑖 = 1,2, … ,𝑚., are used in the estimation. For 𝑑 < 0, 𝐺𝑃𝐻 is asymptotically unbiased and 

normally distributed with 
𝑚(𝑛)

log2(𝑚)
⟶ ∞ as 𝑛 ⟶ ∞ (Hassler, 1993). 

�̂� − 𝑑

var(�̂�)
0.5 ~N(0,1)                                                             (2.12) 

with 𝑣𝑎𝑟(�̂�) =
𝜋2

6
[∑ (𝑇𝑖 − �̅�)2𝑚

𝑖=1 ]−1 and 𝑇𝑖 = log ({2𝑠𝑖𝑛 (
𝜆𝑖

2
)}

−2

). GPH proposed to use 𝑚 = [√𝑛] for the exclusion of 

short memory effect, whereby [𝑦] denotes the largest integer not exceeding 𝑦. 

Smoothed Periodogram (Sperio): an obvious possibility to further develop the Geweke and Porter-Hudak (1983) method 

of estimating long memory parameter 𝑑 is to smooth the periodogram before it is used in the regression (Hassler, 1993; 

Peiris and Court, 1993; Reisen, 1994). In this method the truncation point in the Parzen lag windows is 𝑚 = 𝑛𝛽 , 0 < 𝛽 <

1.  

4.   ANALYSIS OF DATA AND RESULT 

4.1 Descriptive Statistics of the Data used for the Research 

Table 4.1: Descriptive statistics of the MTN internet network flow 

Measure Mean Median Max Min Std. 

Dev 

Std. Err Skewness Kurtosis Jarque-

Bera 

p-

value 

Value 9.9666 7.0908 90.245 0.05 9.3653 0.2989 3.3311 17.5938 14548 0 

The result in Table 4.1 showed descriptive statistics of the MTN internet network flow.  MTN Nigeria recorded an average 

internet flow of 9.9666 Mbps and a standard deviation of 9.3653 Mbps in the period under investigation. On October 10, 

2022 and February 22, 2019 MTN observed a maximum and minimum internet flow of 90.2450 Mbps and 0.0500 Mbps 

respectively, due to the increase in the number of subscribers recorded. The Jarque-Bera test statistic is 14548 with a highly 

significant probability value of 0.000, which indicates that the distribution of network flow is not normally distributed. 

 

https://www.noveltyjournals.com/
https://www.noveltyjournals.com/
https://www.noveltyjournals.com/


   ISSN 2394-9651 

International Journal of Novel Research in Physics Chemistry & Mathematics 
Vol. 10, Issue 3, pp: (115-123), Month: September - December 2023, Available at: www.noveltyjournals.com 
   

Page | 119 
Novelty Journals 

 

4.2 Visualization used for the Research 

To identify the model of any time series data, one must make a guess as to the data generation process. In doing this, one 

should begin by plotting the time plot, ACF and PACF of the series. 

 

Figure 1. Time series plot for the MTN internet network flow 

Figure 1 illustrated the time series plot of MTN internet flow from August 11, 2017 to December 31, 2022. Further the 

figure depicted a strong and thick movement of line which tended to indict highly correlated series. The fluctuation of the 

swing tended to be distributed around an average speed of 30 Mbps except for the last days of the period between 2021 and 

2022. This indicated that as time evolved the subscribers in Nigeria tended to know the usefulness of mobile network as to 

improve their daily activities and jobs. The average of 30 Mbps tended to reflect the encouragement and satisfaction which 

can be derived from the use of mobile network to stir the affair of the economy. 

 

Figure 2.  Plot of ACF for the MTN internet network flow 

The ACF showed a slow decay, indicating the characteristics of a long memory that will later be confirmed by the long 

memory parameter 𝑑 value. This further indicated a highly correlated data point that might likely suggest a non-stationary 

series. The transformation of data point is important in this procedure. Thus, the researcher investigated the unit root process 

of the series for identification of an unstable or long memory behaviour. The plot however, reflected the real behaviour of 

a long memory pattern.                                   

 

Figure 3. Plot of PACF for the MTN internet network flow 
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The PACF plot above depicted pattern of cut-off at lags with sinusoidal movement of pattern.   

4.3 Stationarity Test/Unit Root Test 

Table 4.2: Unit root test for the MTN internet network flow 

Test Value 𝒑-value 

ADF -4.6202 0.01 

PP -975.48 0.01 

KPSS 6.1263 0.01 

The result in Table 4.2 presented the 𝑝 − values of the ADF, PP and KPSS tests. It can be seen that ADF and PP have 𝑝 −

𝑣𝑎𝑙𝑢𝑒𝑠 of 0.01, indicated that the Nigerian telecommunication network flow for the MTN internet flow data does not 

contain a unit root. However, the KPSS test revealed that there is strong evidence to reject the null hypothesis of stationary 

of the series at 5% significance value. This signifies that the series are non-stationary. 

4.4 Estimate of Long Memory Parameter 𝒅 by Different Methods 

Table 4.3: Long memory parameter 𝒅 estimate for MTN internet network flow 

Estimate GPH SPERIO EML WAML 

𝒅 0.2658 0.2622 0.2742 0.2852 

Std. Err 0.0437 0.0125 0.0191 0.0250 

The presence of long memory was discovered after examining ACF plots in Figure 2. The result in Table 4.3 presented the 

estimates of the long memory parameter 𝑑 using the four different methods. The test results confirmed that the data have a 

long memory with estimated parameter of −0.5 < 𝑑 < 0.5 in all the four methods. However, in order to build an ARFIMA 

model, the fractional difference value of 𝑑 =  0.2622 is used for model selection. The table further indicates that there is 

a significant variation between the methods as far as estimating the long memory parameter 𝑑 is concerned. 

4.5 Selection of ARFIMA Models 

Table 4.4: AIC, BIC and Loglikelihood Values of Different ARFIMA Model 

Model AIC BIC Log-Likelihood 

𝐀𝐑𝐅𝐈𝐌𝐀(𝟎, 𝐝, 𝟎) 6795.942 6805.721 -3396 

𝐀𝐑𝐅𝐈𝐌𝐀(𝟏, 𝐝, 𝟎) 6782.036 6796.704 -3388 

𝐀𝐑𝐅𝐈𝐌𝐀(𝟐, 𝐝, 𝟎) 6774.591 6794.149 -3383 

𝐀𝐑𝐅𝐈𝐌𝐀(𝟑, 𝐝, 𝟎) 6761.346 6785.794 -3376 

𝐀𝐑𝐅𝐈𝐌𝐀(𝟎, 𝐝, 𝟏) 6770.319 6784.988 -3382 

𝐀𝐑𝐅𝐈𝐌𝐀(𝟎, 𝐝, 𝟐) 6758.021 6777.579 -3375 

𝐀𝐑𝐅𝐈𝐌𝐀(𝟎, 𝐝, 𝟑) 6759.221 6783.669 -3375 

𝐀𝐑𝐅𝐈𝐌𝐀(𝟏, 𝐝, 𝟏) 6751.356 6770.914 -3372 

𝐀𝐑𝐅𝐈𝐌𝐀(𝟐, 𝐝, 𝟏) 6753.751 6778.199 -3372 

𝐀𝐑𝐅𝐈𝐌𝐀(𝟑, 𝐝, 𝟏) 6755.461 6784.799 -3372 

𝐀𝐑𝐅𝐈𝐌𝐀(𝟏, 𝐝, 𝟐) 6753.707 6778.155 -3372 

𝐀𝐑𝐅𝐈𝐌𝐀(𝟏, 𝐝, 𝟑) 6755.599 6784.937 -3372 

𝐀𝐑𝐅𝐈𝐌𝐀(𝟐, 𝐝, 𝟐) 6751.913 6781.251 -3370 

𝐀𝐑𝐅𝐈𝐌𝐀(𝟐, 𝐝, 𝟑) 6754.755 6788.982 -3370 

𝐀𝐑𝐅𝐈𝐌𝐀(𝟑, 𝐝, 𝟐) 6754.718 6788.946 -3370 

𝐀𝐑𝐅𝐈𝐌𝐀(𝟑, 𝐝, 𝟑) 6740.745 6779.861 -3362 
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The result in Table 4.4 showed the AIC, BIC and loglikelihood values of different ARFIMA model for MTN internet network 

flow. ARFIMA (3 𝑑, 3) model has the minimum AIC values of the model selection criteria. It is assumed in this model that 

the data is subject to autoregressive of order 3, fractional difference of order 0.2622 and moving average of order 3. 

4.6 Parameter Estimation of ARFIMA Model 

Table 4.5: Parameter Estimation for 𝐀𝐑𝐅𝐈𝐌𝐀 (𝟑 𝟎. 𝟐𝟔𝟐𝟐 , 𝟑) Model 

Parameters Estimate Std. Err z-value 𝒑-value 

AR(𝟏) 2.638 0.000 4.696 0.000 

AR(𝟐) -2.530 0.004 -6.036 0.000 

AR(𝟑) 0.889 0.000 6.524 0.000 

MA(𝟏) 2.641 0.002 1.123 0.000 

MA(𝟐) -2.549 0.003 -7.645 0.000 

MA(𝟑) 0. 888 0.000 3.270 0.000 

The result in Table 4.5 showed the parameters estimated by ARFIMA (3 0.2622 , 3). The findings showed that the 

parameters estimated are statistically significant. 

4.7 Structural Breaks Test 

Table 4.6: Quandt Likelihood Ratio (QLR) test 

Test Type Statistic 𝒑-value 

QLR test 448.33 0.000 

The result in Table 4.6 revealed the test result of structural breask using the Quandt Likelihood Ratio (QLR) test. The test 

rejects the null hypothesis of no structural break. Further, the results pointed out that the series have a break point in the 

year 2021, which may be attributed to the ban on the mobile telecommunication networks in Zamfara state and some other 

Katsina local government areas. 

 

Figure 4. Time series plot for the MTN internet network flow with identified structural break 

The plot above pointed out that the series has a break point or unexpected shift in the year 2021. 

5.    CONCLUSION 

This research investigated the long-memory behaviour of Nigerian telecommunication network flow using the ARFIMA 

model. The descriptive statistics revealed an average internet flow of 9.9666 Mbps and a standard deviation of 9.3653 Mbps, 

this indicated that the flow of the network data were close to the average. The flow tended to fluctuate around 30 Mbps, 

except for the period between 2021 and 2022. Maximum and minimum flows of 90.2450 Mbps and 0.0500 Mbps were 

observed on October 10, 2022, and February 22, 2019, respectively, as a result of increased in the number of network 

subscribers. The Jarque-Bera test indicated significant deviations from normality (not normally distributed). ADF and PP 

tests confirmed the absence of a unit root in the series. However, KPSS test result suggested that the series is non-stationary. 

ACF plot showed a slow decay in data. Long memory parameter 𝑑 for MTN internet network flow was estimated using 

different methods, including Geweke and Porter-Hudak (GPH), Smoothed Periodogram (Sperio), Exact Maximum 
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Likelihood (EML), and Whittle Approximate Maximum Likelihood (WAML). The estimation results indicated that the 

series exhibits some degree of long memory behaviour (i.e., the flow behaviour at one point in time can significantly affect 

the behaviour at a distant point in time). However, based on the minimum AIC and BIC values ARFIMA (3 0.2622 , 3) 

model founded to be more suitable for the data. More so, Quandt Likelihood Ratio (QLR) test result revealed that the series 

have a breakpoint in the year 2021. 
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